nt - p h / 06 11 06 6 v 1 6 N ov 2 00 6 Sum Rules For Confining Potentials C . V . Sukumar

نویسنده

  • C V Sukumar
چکیده

Using the Green's function associated with the one-dimensional Schroedinger equation it is possible to establish a hierarchy of sum rules involving the eigenvalues of confining potentials which have only a boundstate spectrum. For some potentials the sum rules could lead to divergences. It is shown that when this happens it is possible to examine the separate sum rules satisfied by the even and odd eigen-states of a symmetric confining potential and by subtraction cancel the divergences exactly and produce a new sum rule which is free of divergences. The procedure is illustrated by considering symmetric power law potentials and the use of several examples. One of the examples considered shows that the zeros of the Airy function and its derivative obey a sum rule and this sum rule is verified. It is also shown how the procedure may be generalised to establish sum rules for arbitrary symmetric confining potentials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008